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I. Introduction

We have successfully completed our first version of an ab-initio molecular

dynamics computer code, whiccan simulate the motion of atoms at a surface and

in the bulk of a semiconductor. We coembiniNewton's equation for the nuclei,

F = mar with the Schrodinger equation for the electrons, HY=EFto obtain a

uniform picture of a covalent systems dynamical properties.

,-Ih this document L_.e'will list some of the simulations,that we have

performed. These simulations should not be considered as,'eing final, but we

decided to try a variety of problems without going into extreme depth, so that

we can better assess the strengths and weaknesses of the technique.

We have developeda tight-binding method etighttbindtng matrix

elements art' calculated entirely from first principles. No fitting to

experiment of any quantities is needed or done. We-use, this tight-binding

Hamiltonian' 5l calculate the electronic structure of the material. The

electronic structure theory is based on the local density approximation (LDA),

with no adjustable parameters have made a number of approximations which

are detailed in Refs. 1, 2, and 3. The use of approximations is essential to

having a method which is fast enough to be useful for simulation of medium and

large size systems. Where possible,,we.lhave-tompared ouj results, to

experimental data and find agreement consistent with the LDA.
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We calculate forces on the Si atoms by employing'the Hellmann-Feynman

theorem. As a consequence of our ab-initio tight binding approach, in

conjunction with a careful optimization of computational techniques, we find

that it is practically possible to perform molecular dynamics simulations in

supercells containing up to a couple hundred atoms. We are working on dramatic

generalizations and enhancements of the procedure, and expect to make rapid

progress.

We close this section with a mention of some general features of the

simulations we have performed. In each simulation we choose initial conditions

so that the linear and angular momentum is zero, and the center of mass is

stationary. Additionally, we will always use the convention that "temperature"

T will refer to "kinetic temperature", that the value of T such that (3/2)kT =

average kinetic energy per particle of the system.

The rest of this report gives brief examples of a variety of simulations.

II. Brief Examples of Simulations

For some simulations we have produced a plot of "kinetic temperature" T vs.

time, where T satisfies the equation: average kinetic energy per particle =

(3/2)kbT. This type of plot illustrates the time dependence of the kinetic 0(v

energy of the system. As we expect from classical equipartition, a system 6

which starts from equilibrium at temperature 2T rapidly converts about half of

that energy into potential energy. The temperature then fluctuates about T.

Thus, for a system started with equilibrium geometry, we may confidently

predict that the final average temperature will be quite close to half of the

initial kinetic temperature we started with. Note that this comment is ali

only for cases where we start from eqilibrium, however. Distribution,
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A second kind of plot we provide is what we term'a "snapshot graph", which

for planar motions gives the trajectories of each particle in the central

supercell. For non-planar dynamics, we show a projection onto the xy plane.

Another plot which lends insight into the molecular dynamics is a graph of

<r2(t)>, which illustrates how far an "average" atom deviates from its starting

position at time t from where it began at t=O. Here <> is a configuration

average over all particles in a cell.

We have in many cases performed a "dynamical quenching" of the system. By

this we refer to a procedure designed to find a geometrical configuration with

minimum potential energy. The minimum found may be a global minimum (as we

will illustrate for small clusters of atoms), or a local minimum for a more

complicated example, such as the dynamical quenching of a large number of atoms

at a very high temperature. The method we found most effective was to quench

the atomic velocities (i.e. set them to zero) near a peak of the temperature

vs. time plot, then let the system evolve naturally until it reached the next

maximum, quench again, and so on. This was found to be a very effective and

accurate means of finding minimum energy configurations.

For some of our calculations we found it useful to calculate double time

autocorrelation functions of two kinds. These are convenient because they

probe the "memory" of the system. Roughly speaking, we may interpret small (in

some appropriate sense) values of an autocorrelation function evaluated at two

different times to mean that the dynamical variable from which we construct the

correlation function is only weakly correlated, or entirely uncorrelated. We

may think of this as a gauge of "information loss" with time evolution. Some

specific functions we calculate:

1. A velocity-velocity autocorrelation function:

4 4
g~)<v (-T) v (O) >

g C =4 4+<v(O) *v(O)>



where a cell average <> is taken of the dot product of atomic velocities at two

times t1 and t2 , and where T - t2 - t1. Since this function is invariant under

translations of the temporal origin, we may take g to be a function only of r.

2. A position-position autocorrelation function:

Gx(.r) = <U,(r)' ,(0)> ,

where T is the same as for the previous equation. Here u is the departure from

equilibrium. Function gx obviously contains information about the "diffusive"

properties of the molecular motion.

In either case, it is worthwhile to further consider the Fourier transforms

of the correlation functions. The frequency domain version of g and gx is

clearly the natural function to work with if we are interested in a normal mode

view of the motion. In this case, the frequency functions are interpreted as a

spectral mode-density.

II-A Si Clusters.

The simplest class of problems susceptible to our techniques is the

dynamics of small silicon clusters. Our technique does not require

periodicity, so that reciprocal lattice vectors G are never used. This allows

molecules, bulk systems, and surfaces to be handled all within the same

framework.

For Si clusters we investigate vibrational modes, equilibrium ground state

geometries, electronic states, high temperature phenomena, and collisions. The

following simulations illustrate these.

Si at room temperature

An Si3 molecule is started at equilibrium with random planar velocities

having an average energy of 600K. The center of mass is at rest and the

molecule has no angular momentum. This constrains the motion to two

dimensions.



Figure 1.

A snapshot of the simulation showing the positions of the three atoms in

the Si3 cluster over the time of the simulation. The motion is entirely in the

plane. There are 2200 time steps each of 1.57 fs.

Figure 2.

The kinetic "temperature" as a function of time for the Si3 simulation.

The system starts at 600K, but the average over the whole simulation is close

to 300K as expected from the equipartition theorem. Notice that the

"temperature" of the molecule oscillates between 600K and OK.

Si3 at -2500K

We now consider what happens to an Si3 molecule at high temperature. A Si3

molecule is started with random planar velocities having an initial average

energy of 3000K. The atoms were not started from equilibrium; rather they were

started from a right isosceles triangle with a bond length of 2.0 A. The

average temperature over the entire simulation is -2500K. The center of mass

is at rest and the molecule has no angular momentum. This constrains the

motion to two dimensions. There were 3600 time steps, with each time step

being 1.57 fs.

Figure 3.

A snapshot of the time evolution of the Si3 simulation at -2500K. The

motion is entirely 2 dimensional, and is very far from harmonic.

Figure 4.

The temperature of the system as a function of time. The system started

with an average kinetic energy of 3000K, but higher temperatures are seen since

the system was not started from the equilibrium geometry.
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Dynamical quenching of Si3 -

A dynamical quenching was performed on an Si3 molecule to find the ground

state structure. The Si3 molecule was started in a right triangle with sides

of 1A and 2A. The atoms start very close together, and in fact the atoms would

fly apart if they were not annealed. However, since it is quenched, the system

relaxes rapidly to the equilibrium structure in -100 time steps. The final

geometry is th4. of an isosceles triangle.

Figure 5.

A snapshot of the dynamical quenching of the Si3 molecule. The final

positions are indicated by the "dots".

Figure 6.

The temperature as a function of time during the quench. We use the

annealing procedure discussed in Section II.

Figure 7.

The final minimum energy geometry of the Si3 molecule.

Figure 8.

The energy eigenvalues of the single particle LDA Hamiltonian, as a

function of angle for the Si3 molecule. The bond length is kept fixed at

2.189A. The Fermi energy shown in the figure separates occupied from

unoccupied states. For the case of an equilateral triangle (60 degrees), the

system has partially occupied levels, and is unstable.

Vibrational spectra of Si3

Figure 9.

The spectrum of vibrational modes obtained from the w-transform of the

velocity-velocity autocorrelation function, < v(t)v(0) >/< v(0)v(0) >. The

peaks occurred at normal mode frequencies, with broadening determined by the

total elapsed time of the simulation. (In this figure, 3600 steps of 1.57 fs
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were used). Two different average temperatures are shown. The simulation has

no angular momentum or center of mass motion leaving the number of vibrational

modes at 3n-6.

Figure 10.

We show for completeness the equilibrium structures determined through

dynamical quenching for Si4 , Si5 , Si6 , and Si7.

Collisions involving five Si atoms.

Our final simulation involving Si clusters involves the collision of two

Si2 molecules to form an Si4 molecule.

The simulation begins with two Si2 molecules coming together and colliding

to form Si4 . The center of mass motion and total angular momentum are zero.

When the two collide, a large energy of bonding is converted into kinetic

energy and the newly created Si4 molecule vibrates violently. The vibration

continues for a time, and finally a dynamical is performed to bring the system

to its equilibrium geometry.

Figure 11.

The snapshot of the time evolution of the collision between two Si2

molecules to form a highly excited Si4 molecule.

Figure 12.

The temperature as a function of time for the collision of two Si2

molecules. The first 1000 time steps are free motion of non-interacting Si2

molecules. At time step -1000 the two molecules interact and the kinetic

temperature rises substantially. The newly formed Si4 molecule evolves

naturally in time until about time step 2500 when the system is dynamical

quenched equilibrium.
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[1001 phonons in bulk Si.

We now compute dynamically the phonon vibrational modes of bulk Si for

phonons in the [100] direction. A supercell is used which contains 16 Si

atoms. Eight special k points are used from the entire Brillouin zone in the

computation of the total energy from which the forces are determined.

Figure 13.

(a) The [0 -1 1] plane in the diamond lattice, from which the supercell is

constructed.

(b) The supercell geometry used to determine phonon modes with wavevector

along X. The cell contains four segments of the type shown in (a). The larger

atoms are shifted above the plane by a/%(2, where a is the cubic lattice

constant of the diamond lattice. There are 16 atoms in this cell (some edge

atoms are in different cells), and the atoms in this cell can vibrate with

phonon modes of wavevector 0/4, 1/4, 2/4, 3/4, and 4/4 of the X point in the

Brillouin zone.

Simulation of all modes with k along [1001.

This simulation shows bulk phonon modes of all polarizations with

wavevector along [1001. The system is started from the equilibrium

configuration, and the atoms are given random velocities with an initial

temperature of 600K. This yields an average over the entire simulation of

-300K. The motion consists of a linear combination phonon of the five

vavevectors (0, 0.2, 0.4, 0.6, 0.8, and 1.0 of 2n (100)), with all

polarizations.

Figure 14.

A snapshot of the first few atoms in the supercell for the simulation with

all modes present. Notice that for k along [100], the amplitude is much
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greater perpendicular to k, than parallel to k. This is due to the low-

frequency transverse acoustic mode.

Figure 15.

The double fourier transform of the transverse velocity-velocity

autocorrelation function, gn(t), where n is an index for particle n. The

transform to w-space was described in the introduction. The new feature of the

double transform is the use of a spatial k transform with the atomic position

of atom n. Thus gn(t) is transformed to g(k,w). This function is plotted as a

function of a for the various values of k. Turning the figure on its side

yields the more conventional o vs. k dispersion relation.

Figure 16.

Conventional phonon dispersion relation calculated by computing the

dynamical matrix using the frozen phonon technique in the supercell geometry

describe above. The atoms are moved by small amounts statistically from

equilibrium, and effective spring constants are determined. About 100 k

vectors in the Brillouin zone are used to evaluate the electronic total energy.

The theory is in close agreement with experiment.

Simulation of lattice relatation around Si vacancy.

We have simulated the lattice relaxation around a Si vacancy. We use a 32

atom BCC supercell geometry for the perfect crystal. Since one site is a

vacancy, the atom at the origin is missing and there are actually only 31

atoms. The lattice constant chosen is 5.5A, as this corresponds to the

theoretical bulk minimum. Four special k-points are used. They are

0.285593(1,1,1), 0.285593(-1,-1,1), 0.285593(-1,1,-1), and 0.285593(1,-1,-1) in

inverse A units. These are the Monkhorst-Pack special points for the BCC

lattice with lattice constant 5.5A.
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The simulation starts at the "ideal" positions, meaning the atoms are in

the same position as if the vacancy were not there. We give the atoms random

velocities with average temperature of 600K. Normally this would yield after

some time an average velocity of 300K (room temperature). After 200 time steps

(each of .206 fs), we begin to quench the system.

Figure 17.

The electronic energy level spectrum in the band gap region for the

vacancy. A triply degenerate level is found in the band gap which is occupied

by two electrons. This corresponds to the situation at time t.0 (unrelaxed).

Because the levels are degenerate and partially occupied, the system can

undergo a Jahn-Teller distortion in which the symmetry is broken. The level

structure at the end of the anneal is shown on the right. A single level is

found at lower energy and is doubly occupied. A pair of doubly degenerate

levels are found at higher energy are are unoccupied (for the case of the

neutral vacancy).

Figure 18.

The final positions of the first nearest neighbors around the vacancy drawn

to scale. The square shows the geometry of the "ideal" unrelaxed system, and

the rectangle the geometry of the Jahn-Teller distorted system. The Jahn-

Teller distortion is of tetragonal symmetry with the x and z displacements

being equal, while the y displacement is different. The final tetragonal

pattern could have been either x-, y-, or z-like. It came out y-like in this

simulation, because there was no energy barrier from the configuration which

existed when the annealing began at the 200th step.

Free vibrations and simulated annealing of "liquid" Si at 1500K.

In this simulation, we start the particles at equilibrium, but with the

very high average velocity of 3000K. This ought to yield (according to the
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equipartition theorem) an average temperature near equilibrium of about 1500K.

This is near the melting point of bulk Si (expt. 1683K). This high temperature

stipulation was exploratory, so that only the k equal to zero vavevector is

used as a "special" point to sum over the Brillouin zone. Four special points

should be used for a more rigorous simulation.

The simulation is in two parts. In the first 500 times steps (2.09 fs

each), the particles are allowed to move freely under the equations of motion.

They can vibrate and/or diffuse. In the next 800 time steps the system is

annealed by quenching the system by setting the velocities equal to zero on

occasion.

Figure 19.

The snapshot of the first 500 time steps of the simulation where the atoms

are moving freely. The geometry is the 32 atoms BCC geometry. One notices

large excursions from the equilibrium positions, indicating diffusive motion

and or melting.

Figure 20.

The average "temperature" as a function of time. At the first time step,

the particles are started from equilibrium with an average velocity

corresponding to a temperature of 3000K. Within a very few time steps, the

kinetic energy is reduced by about a factor of 2, having been converted into

potential energy. The average temperature over the whole simulation is 1400K,

but large fluctuations are evident.
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Summary

We have just illustrated a few applications of our nevly developed quantum

molecular dynamics method and computer code. The simulations reported here are

our first and we anticipate large leaps are still possible. We believe our

work is a major breakthrough in the area of quantum molecular dynamics.
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